Solving Literal Equations

Bellwork: Solve the following equations for he variable.

$$\begin{array}{ccc}
1. & 2x = 4 \\
x = &
\end{array}$$

$$2. \ 4y + 8 = -12$$

3.
$$3z - 6 = -2z + 9$$

 $z =$

Show your work here!

$$1) \begin{cases} 2x = 4 \\ 2 \end{cases}$$

$$x = 2$$

2.8

$$\frac{4y+8=-12}{4y=-20}$$

$$32 = -22 + 15$$

 $+22 + 22$
 $+22 + 22$
 $+22 + 22$

Definition of Literal Equations

Examples of Literal Equations:

$$3x + 2y = z$$

$$d = rt$$

$$A = \frac{1}{2}bh$$

A literal equation is an equation that has more than One.

Variable

What is the most common type of literal equation? Hornula

Give an example of a formula. $H = l \cdot \omega$

In tormulas you are given values for some of the Variables and you need to solve for the unknown . Vanable

What does it mean to solve for x?

To solve for \times would mean to get \times by itself on one side of the equation, with no \times 's on the other side.

For what variable are the follow equations already solved for?

1.
$$d = rt$$

2.
$$A = \frac{1}{2}bh$$

3.
$$3x + 2y = z$$

How would we solve the new variable?

1.
$$d = rt$$

Solved for:

2.
$$A = \frac{1}{2}bh$$

Solved for:

$$3. \quad 3x + 2y = z$$

Solved for:

equations above for a

Solve for
$$\mathbf{r}$$
. $d = rt$

$$\frac{d}{+} = r$$

$$A = \frac{1}{2}bh$$

$$\frac{\partial A}{\partial b} = \frac{\partial h}{\partial b}$$

$$3x + 8y = z - 2y$$

$$\frac{3x = -\lambda y + z}{3}$$

The bellwork had only one rariable + What is the difference between the equations the equations we just solved had two we just solved and the or more variables. equations we solved for bellwork? 3x - 4y = 7, for x15y + 1 = x, for yGetting Started... Solve the equations for the indicated variable. 3x - 4y = 7, for x 15y + 1 = x, for yex - 2y = 3z, for x v = mx + b, for m km + 5x = 6y, for mkm + 5x = 6y, for m $3 \cdot \frac{by+2}{3} = c$, for y Stay on Course... Solve the equations for the indicated variable. $\frac{by+2}{3} = c$, for y $P = \frac{E^2}{R}, for R$ $y = 3c - 3 = \frac{3}{5}y + a = b, for y$ $\frac{3}{E}y + a = b, for y$ $\frac{3ax - n}{5} = -4, for x$ Finish Line... Solve the equations for the indicated variable. $\frac{3ax - n}{5} = -4, for x$ p(t+1) = -2, for t

or distribut